## Chapter 8 <br> Rotational Motion I Chapter Review

## EQUATIONS:

- $v=r \omega$ [This is the relationship between the magnitude of the velocity $v$ of a point moving in a circular path of radius $r$ and the magnitude of the motion's angular velocity $\omega$ about the center of motion. Note that the center must be a fixed point in the system.]
- $a=r \alpha$ [This is the relationship between the magnitude of the acceleration $a$ of a point moving in a circular path of radius $r$ and the magnitude of the motion's angular acceleration $\alpha$ about the center of motion. Note that the center must be a fixed point in the system.]
- $\omega=-5 \boldsymbol{i}$ [This is an angular velocity vector, where 5 is the magnitude, $\boldsymbol{i}$ is the direction of the axis about which the rotation occurs, and the negative sign signifies that the rotation is clockwise as viewed from the $+\boldsymbol{i}$ side of the coordinate axis.]
- $\alpha_{\text {instantaneous }}=\alpha_{\text {average }}=\alpha$ [If the angular acceleration is CONSTANT, the instantaneous angular acceleration and the average angular acceleration are equal. In such cases, both angular acceleration terms are characterized with an $\alpha$.]
- $\alpha=\frac{\Delta \omega}{\Delta \mathrm{t}}$, or $\omega_{2}=\omega_{1}+\alpha \mathrm{t} \quad$ [This rotational kinematic equation comes from the fact that the instantaneous angular acceleration $\alpha$ and the average angular acceleration $\frac{\Delta \omega}{\Delta \mathrm{t}}$ over any interval will be the same, given the angular acceleration is constant. REMEMBER whenever you see a time variable, whether presented as $t$ or $\Delta \mathrm{t}$, you are always dealing with a TIME INTERVAL.]
- $\Delta \theta=\omega_{1} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2}$ or $\theta_{2}=\theta_{1}+\omega_{1} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \quad$ [This rotational kinematic equation relates angular displacement $\Delta \theta$ (i.e., the change of angular position between time 1 and time 2), the initial angular velocity $\omega_{1}$ (i.e., the angular velocity at time 1 ), the angular acceleration $\alpha$, and the time interval $t$.]
- $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha\left(\theta_{2}-\theta_{1}\right) \quad$ [This rotational kinematic equation relates angular velocities at two different points in time to the angular acceleration $\alpha$ and the angular displacement $\Delta \theta$ during that interval.]
- $\omega_{\mathrm{avg}}=\frac{\omega_{2}+\omega_{1}}{2}$ [This rotational kinematic equation is RARELY USED. It relates the average angular velocity $\omega_{\text {avg }}$ over an interval to the initial and final angular velocities-$\omega_{1}$ and $\omega_{2}-$-associated with that interval.]
- $\Delta \theta=\omega_{\mathrm{avg}} \Delta \mathrm{t}$ [This rotational kinematic equation is RARELY USED. It relates the average angular velocity $\omega_{\text {avg }}$ over time interval $\Delta \mathrm{t}$ to the angular displacement $\Delta \theta$ during that time interval.]
- $\mathrm{I}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$ [This is the definition of the moment of inertia of $n$ discrete pieces of mass about a given axis, where $m_{i}$ is the $i^{t h}$ mass in the system and $r_{i}$ is the perpendicular distance (i.e., the shortest distance) between that mass and the axis in question.]
- $I=m r^{2}$ [This is the moment of inertia of a point mass $m$ about an axis, where $r$ is the perpendicular distance from the mass to the axis in question.]
- $I=\int r^{2} d m \quad$ [This expression is used to derive the moment of inertia of a continuous, solid object about some axis, where $r$ is the perpendicular distance from the mass $d m$ to the axis in question.]
- $\lambda=\frac{\text { mass }}{\text { unit length }}=\frac{\mathrm{dm}}{\mathrm{dl}}$ [Called a linear density function, $\lambda$ (lambda) is a RATIO that quantifies the amount of mass per unit length there is along some linear structure. Differentially, $\lambda=\frac{\mathrm{dm}}{\mathrm{dl}}$ with $d m$ being the differential mass involved in a differential length $d l$. The expression is useful because it allows you to express $d m$ in terms of $\lambda$ and $d l$, or $\mathrm{dm}=\lambda \mathrm{dl}$. This function is used whenever there is mass variation in one dimension only, specifically for rod-like structures. If the structure is homogeneous (i.e., the mass is uniformly distributed throughout), $\lambda$ also equals the total mass in the structure divided by the total length of the structure, or $M / L$. If the structure is inhomogeneous, $M / L$ is nonsense and a function must be provided for $\lambda$ (i.e., something like $\lambda=k x$, where $k$ is a constant and $x$ is a variable that defines the distance between $d m$ and an axis of interest). In any case, the $\mathrm{dm}=\lambda \mathrm{dl}$ relationship is ALWAYS true.]
- $\sigma=\frac{\text { mass }}{\text { unit area }}=\frac{\mathrm{dm}}{\mathrm{dA}}$ [Called an area density function, $\sigma$ (sigma) is a RATIO that quantifies the amount of mass per unit area there is behind a given area on the surface of a body. Differentially, $\sigma=\frac{\mathrm{dm}}{\mathrm{dA}}$ with $d m$ being the differential mass behind the differential surface area $d A$. This function is used whenever there is mass variation in two dimensions, or in uniformly distributed three-dimensional situations that just look easier to do in two dimensions--a rectangular solid is a good example. The expression is useful because it allows you to write $d m$ in terms $\sigma$ and $d A$, or $\mathrm{dm}=\sigma \mathrm{dA}$. If the structure is homogeneous, $\sigma$ is equal to the total mass within the structure divided by the total surface area of the structure, or $M / A$. If the structure is inhomogeneous, $M / A$ is nonsense and a function is required to tell you how the density acts from point to point (something like $\sigma=\mathrm{kr}$, where $k$ is a constant and $r$ is a distance variable that makes sense relative to the coordinate system). In any case, the $\mathrm{dm}=\sigma \mathrm{dA}$ expression is ALWAYS true.]
- $\rho=\frac{\text { mass }}{\text { unit volume }}=\frac{\mathrm{dm}}{\mathrm{dV}}$ [Called a volume density function, $\rho$ (rho) is a RATIO that quantifies the amount of mass per unit volume associated with a distribution of mass. Differentially, $\rho=\frac{\mathrm{dm}}{\mathrm{dV}}$ with $d m$ being the differential mass associated with the differential volume $d V$. The expression is useful because it allows you to write $d m$ in terms of $\rho$ and $d V$, or $\mathrm{dm}=\rho \mathrm{dV}$. If the structure is homogeneous (i.e., the mass is uniformly distributed throughout), $\rho$ also equals the total mass in the structure divided by the total volume, or $M / V$. If, on the other hand, the structure is inhomogeneous, $M / V$ is nonsense and a function for $\rho$ must be provided (i.e., something like $\rho=k r$, where $k$ is a constant and $r$ is a variable that defines the distance between $d m$ and an axis of interest). In any case, the $\mathrm{dm}=\rho \mathrm{dV}$ expression is ALWAYS true.]


## COMMENTS, HINTS, and THINGS to be aware of:

- The rotational kinematic equations--what are they?
--These are rotational relationships between the angular displacement $\Delta \theta$, angular velocity $\omega$, angular acceleration $\alpha$, and time $t$, that are applicable ONLY when the angular acceleration is CONSTANT (i.e., when $\alpha$ is not, say, a function of $\theta$ ).
- $v=r \omega$ is predicated on the assumption that the angular velocity of an object is measured as the object sweeps circularly about a fixed point. The same is true of $a=r \alpha$.
- In theory, the integral form of the moment of inertia expression says the following: Take all of the mass you can find that is located within a tiny differential volume $d V$ a distance $r$ units from the axis in question (or, if you are using an area density function, within a tiny differential area $d A$ a distance $r$ units from the axis . . or, if you are working with a linear density function, in a tiny differential length $d r$ a distance $r$ units from the axis), call that differential mass $d m$, multiply $d m$ by $r^{2}$, do that for all possible $r^{\prime} s$, then sum (i.e., integrate--the final expression will look like $I=\int r^{2} d m$ ).

