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Chapter 8
Rotational Motion I Chapter Review

EQUATIONS:

•  v = r ω    [This is the relationship between the magnitude of the velocity v of a point moving in
a circular path of radius r and the magnitude of the motion's angular velocity ω  about the
center of motion.  Note that the center must be a fixed point in the system.]

•  a = r α    [This is the relationship between the magnitude of the acceleration a of a point
moving in a circular path of radius r and the magnitude of the motion's angular
acceleration α  about the center of motion.  Note that the center must be a fixed point in
the system.]

•  ω = -5i   [This is an angular velocity vector, where 5 is the magnitude, i is the direction of the
axis about which the rotation occurs, and the negative sign signifies that the rotation is
clockwise as viewed from the +i side of the coordinate axis.]

•  
  
α instantaneous = αaverage = α    [If the angular acceleration is CONSTANT, the instantaneous

angular acceleration and the average angular acceleration are equal.  In such cases, both
angular acceleration terms are characterized with an α .]

•  
    
α = ∆ω

∆t
, or ω 2 = ω1 + αt    [This rotational kinematic equation comes from the fact that the

instantaneous angular acceleration α  and the average angular acceleration 
  

∆ω
∆t

 over any

interval will be the same, given the angular acceleration is constant.  REMEMBER
whenever you see a time variable, whether presented as t or   ∆t , you are always dealing
with a TIME INTERVAL.]

•  
    
∆θ = ω1t + 1

2
αt2 or θ2 = θ1 + ω1t + 1

2
αt2   [This rotational kinematic equation relates angular

displacement ∆θ  (i.e., the change of angular position  between time 1 and time 2), the
initial angular velocity   ω1 (i.e., the angular velocity at time 1), the angular acceleration α ,

and the time interval t.]

•  
  
ω 2

2 = ω1
2 + 2α θ2 − θ1( )    [This rotational kinematic equation relates angular velocities at

two different points in time to the angular acceleration α  and the angular displacement
∆θ  during that interval.]

•  
  
ωavg =

ω 2 + ω1
2

   [This rotational kinematic equation is RARELY USED.  It relates the

average angular velocity 
  
ωavg  over an interval to the initial and final angular velocities--

  ω1 and   ω 2--associated with that interval.]
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•  
  
∆θ = ωavg∆t    [This rotational kinematic equation is RARELY USED.  It relates the average

angular velocity 
  
ωavg  over time interval   ∆t  to the angular displacement ∆θ  during that

time interval.]

•  
  
I = miri

2

i= 1

n

∑   [This is the definition of the moment of inertia of n discrete pieces of mass

about a given axis, where mi is the ith mass in the system and ri is the perpendicular

distance (i.e., the shortest distance) between that mass and the axis in question.]

•  I = mr2   [This is the moment of inertia of a point mass m about an axis, where r is the
perpendicular distance from the mass to the axis in question.]

•    I = r2dm∫    [This expression is used to derive the moment of inertia of a continuous, solid

object about some axis, where r is the perpendicular distance from the mass dm to the
axis in question.]

•  
    
λ = mass

unit length
= dm

dl
    [Called a linear density function, λ  (lambda) is a RATIO that

quantifies the amount of mass per unit length there is along some linear structure.

Differentially, 
  
λ = dm

dl
 with dm being the differential mass involved in a differential length

dl.  The expression is useful because it allows you to express dm in terms of λ  and dl, or
  dm = λdl .  This function is used whenever there is mass variation in one dimension only,
specifically for rod-like structures.  If the structure is homogeneous (i.e., the mass is
uniformly distributed throughout), λ  also equals the total mass in the structure divided
by the total length of the structure, or M/L.  If the structure is inhomogeneous, M/L is
nonsense and a function must be provided for λ  (i.e., something like λ  = kx, where k is a
constant and x is a variable that defines the distance between dm and an axis of interest).
In any case, the   dm = λdl  relationship is ALWAYS true.]

•  
    
σ = mass

unit area
= dm

dA
   [Called an area density function, σ  (sigma) is a RATIO that quantifies

the amount of mass per unit area there is behind a given area on the surface of a body.

Differentially, 
  
σ = dm

dA
 with dm being the differential mass behind the differential surface

area dA.  This function is used whenever there is mass variation in two dimensions, or in
uniformly distributed three-dimensional situations that just look easier to do in two
dimensions--a rectangular solid is a good example.  The expression is useful because it
allows you to write dm in terms σ  and dA, or   dm = σdA .  If the structure is homogeneous,
σ  is equal to the total mass within the structure divided by the total surface area of the
structure, or M/A.  If the structure is inhomogeneous, M/A is nonsense and a function is
required to tell you how the density acts from point to point (something like   σ = kr , where
k is a constant and r is a distance variable that makes sense relative to the coordinate
system).  In any case, the   dm = σdA  expression is ALWAYS true.]
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•  
    
ρ = mass

unit volume
= dm

dV
   [Called a volume density function, ρ  (rho) is a RATIO that quantifies

the amount of mass per unit volume associated with a distribution of mass.  Differentially,

  
ρ = dm

dV
 with dm being the differential mass associated with the differential volume dV.

The expression is useful because it allows you to write dm in terms of ρ  and dV, or

  dm = ρdV .  If the structure is homogeneous (i.e., the mass is uniformly distributed
throughout), ρ  also equals the total mass in the structure divided by the total volume, or
M/V.  If, on the other hand, the structure is inhomogeneous, M/V is nonsense and a
function for ρ  must be provided (i.e., something like ρ  = kr, where k is a constant and r is
a variable that defines the distance between dm and an axis of interest).  In any case, the

  dm = ρdV  expression is ALWAYS true.]

COMMENTS, HINTS, and THINGS to be aware of:

•  The rotational kinematic equations--what are they?
--These are rotational relationships between the angular displacement ∆θ , angular velocity

ω , angular acceleration α , and time t, that are applicable ONLY when the angular
acceleration is CONSTANT (i.e., when α  is not, say, a function of θ ).

•  v = r ω  is predicated on the assumption that the angular velocity of an object is measured as
the object sweeps circularly about a fixed point.  The same is true of a = r α .

•  In theory, the integral form of the moment of inertia expression says the following: Take
all of the mass you can find that is located within a tiny differential volume dV a distance
r units from the axis in question (or, if you are using an area density function, within a
tiny differential area dA a distance r units from the axis . . . or, if you are working with a
linear density function, in a tiny differential length dr a distance r units from the axis), call
that differential mass dm, multiply dm by r2, do that for all possible r's, then sum (i.e.,
integrate--the final expression will look like   I = r2dm∫ ).


